A Decision Tree Approach for Identifying the Optimum Window Size for Extracting Texture Features from TerraSAR-X Data

نویسندگان

  • John Richard OTUKEI
  • Thomas BLASCHKE
  • Michael COLLINS
چکیده

Synthetic Aperture Radar (SAR) texture is an important derived variable for improving land cover classification accuracy from SAR data. However, a number of factors affect the amount and quality of texture information obtained from radar data and these include: the window size, data type, the size of grey level quantisation, displacement and the look direction. The main aim of this study was to determine the optimum window size for the extraction of texture features from TerraSAR-X (TSX) data and to study the effect of different window sizes on the classification accuracy of the selected land cover types. A new approach based on Decision Trees (DTs) was explored to determine the optimum window size for SAR texture analysis and the results compared with those obtained using Transformed Divergence (TD) and Jeffries Matusita (JM) statistical distance measures. In all the three approaches, a window size of 11 by 11 was found to be the most appropriate. Generally, the classification accuracy increased with the size of texture window. However, in all the three approaches, there was little increase in classification accuracy beyond a window size of 11 by 11.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Identification of the most important factors of ethnic differences in anthropometric dimensions of Iranian workers using the decision tree

Background and aims: Anthropometry is the branch of human science that considers the physical measurement of the human body, especially size and shape. One application of anthropometrical data in ergonomics is the design of working space and the development of industrialized products. So that the tools, equipment and workstations, which designed based on the physical dimensions of the workers, ...

متن کامل

SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation

Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...

متن کامل

Pixel-Based Texture Classification of Tissues in Computed Tomography

Previous research has been done to classify different tissues/organs of interest present in medical images, in particular in Computed Tomography (CT) images. Most of the research used the anatomical structure present in the images in order to classify the tissues. In this paper, instead of using the anatomical structure, we propose a pixel-based texture approach for the representation and class...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012